Cytotoxic Amides from the Octocoral Telesto riisei

Gaya K. Liyanage and Francis J. Schmitz*

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
Received August 1, 1995^{\circledR}

Abstract

Two new acyl derivatives of β-phenylethylamine, N -(2-phenylethyl)-9-oxohexadecacarboxamide (1) and N -(2-phenylethyl)-9-hydroxyhexadecacarboxamide (2), and two new tetrahydroxysterols, cholestane-3 $\beta, 5 \alpha, 6 \beta-26$-tetrol 27 -acetate (3) and cholestane- $3 \beta, 5 \alpha, 6 \beta$-26-tetrol (4), have been isolated from the coel enterateTelesto riisei collected in Chuuk, Federated States of Micronesia. Structures were determined from spectroscopic data. All new compounds were mildly toxic to murine leukemia cells (P-388) in culture.

Numerous species of soft corals (Alcyonaceae) and gorgonians (Gorgonaceae) abound on tropical reefs, and these octocorals have been the source of a vast array of secondary metabolites. ${ }^{1}$ In contrast, the octocoral order Telestaceae contains few members, and chemical investigation of only one species, Telesto riise Duchassaing and Michelotti (family Telestidae), has been reported. An initial report ${ }^{2}$ described two new pregnane derivatives from T. riise collected in Enewetak, whereas later reports ${ }^{3,4}$ on specimens collected in Hawaii have described 19 punaglandins, highly functionalized prostanoids. In our search for anticancer agents we have investigated T. riisei collected at Chuuk Atoll, Federated States of Micronesia. We report here two cytotoxic amides and two new hydroxy sterols from this octocoral.

Frozen specimens were soaked first in MeOH and then $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$. The combined extracts were dissolved in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (9:1) and partitioned against hexane. The defatted al cohol solution was diluted with $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(7: 3)$ and then extracted with CH_{2-} Cl_{2}. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solubles were cytotoxic to $\mathrm{P}-388$ leukemia cells and were fractionated successively by LH-20, Si gel, and finally reversed-phase HPLC to give the amides $\mathbf{1}$ and $\mathbf{2}$ and sterols $\mathbf{3}$ and $\mathbf{4}$.

Amide 1 was obtained as a white solid, mp $85^{\circ} \mathrm{C}$, and its formula was confirmed as $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NO}_{2}$ by HREIMS. The presence of ketone and amide groups was revealed

[^0]by IR [3316 (NH); 1707 (ketone); $1638 \mathrm{~cm}^{-1}$ (amide)] and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\delta 173.08,206.39$) data. A five-proton multiplet at $\delta 7.23$ revealed the presence of a monoalkylsubstituted phenyl group.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum contained a coupled spin system (COSY analysis) corresponding to $\mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2}-$ $\mathrm{CH}_{2}-\left[\delta 4.41\left({ }^{1} \mathrm{H}, \mathrm{br} \mathrm{s}\right.\right.$, exchangeable), $3.49(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $6.9 \mathrm{~Hz}), 2.79(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz})$]. This unit was confirmed to be part of a phenylethylamine moiety by the correlations observed in an HMBC experiment between the $\delta 2.79$ signal and carbons ($\delta 138.93$, s ; 128.62 , d) of the phenyl group. Further support for the phenylethylamine amide moiety was gleaned from an intense peak (base peak) in the EIMS at m / z 104, corresponding to a charged styrene unit resulting from a McL afferty cleavage of $\mathbf{1}$.

The best dispersion of methylene proton signals was obtained in $\mathrm{C}_{6} \mathrm{D}_{6}$. In this solvent, a methylene triplet at $\delta 1.80(\mathrm{~J}=7.5 \mathrm{~Hz})$, corresponding to the protons adjacent to the amide carbonyl group, showed correlation to a methylene pentet at $\delta 1.65$. An overlapping pair of methylene triplets at $\delta 2.07(\mathrm{~J}=7.5 \mathrm{~Hz})$ and $2.04(\mathrm{~J}=7.0 \mathrm{~Hz}$) were correlated to partially overlapping methylene pentets at $\delta 1.60$ and 1.54. The latter signals were further coupled to the methylene envel opes at δ 1.28. The data are consistent with methylene groups flanking a ketone in an extended methylene chain. One conventional methyl triplet was observed at $\delta 0.87$.
The location of the ketone group in the aliphatic chain was deduced by analysis of the mass spectrum, in particular, a strong $\mathrm{M}^{+}-99$ peak at $\mathrm{m} / \mathrm{z} 274$ corresponding to the loss of $\mathrm{C}_{7} \mathrm{H}_{15}$ (see structure). The combined spectral data confirm formula 1.

Amide $\mathbf{2}$ was an optically active, white solid, mp 78 ${ }^{\circ} \mathrm{C},[\alpha]^{25} \mathrm{D}-2.68$, with a molecular weight of 375 as confirmed by LREIMS and LRFABMS [m/z 398 for (M $+\mathrm{Na})^{+}$]. An $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}$ peak at $\mathrm{m} / \mathrm{z} 357$ in the LREIMS suggested the presence of an alcohol group. The IR revealed absorptions compatible with both hydroxyl and amide groups ($3308,1638 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum contained all the signals present in $\mathbf{1}$ for the phenylethylamine moiety and methylenegroup adjacent to the amide carbonyl ($\delta 1.78, \mathrm{t}$). A methine signal at δ $3.48\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ and the lack of the methylene absorptions at $\sim \delta 2 \mathrm{ppm}$ corresponding to protons adjacent to a ketone suggested that $\mathbf{2}$ was the alcohol analogue of $\mathbf{1}$. This was confirmed when oxidation of $\mathbf{2}$ with $\mathrm{CrO}_{3} / \mathrm{Py}$
in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded a product whose ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and MS were the same as those of $\mathbf{1}$.

The formula for compound $\mathbf{3}$ was confirmed as $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{5}$ by HRFABMS [501.3556 for $(\mathrm{M}+\mathrm{Na})^{+}$]. The IR spectrum contained absorptions indicative of hydroxyl groups ($3117-3468 \mathrm{~cm}^{-1}$), and a split carbonyl absorption at 1713, 1729, and strong absorption at 1230 cm^{-1} combined with a singlet methyl proton NMR signal at $\delta 1.95$ indicated the presence of an acetate group. No olefinic carbon signals were observed in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum, and hence, $\mathbf{3}$ was determined to be tetracydic.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{OD}$ exhibited various peaks characteristic of a $3 \beta, 5 \alpha, 6 \beta$-trihydroxysterol moiety, ${ }^{5}$ a common feature in marine polyhydroxysterols. ${ }^{6}$ These included methyl singlets at $\delta 0.67(\mathrm{H}-$ 18) and 1.11 (H-19), two overlapping methyl doublets at $0.90 / 0.89(\mathrm{~J}=6 \mathrm{~Hz}, \mathrm{H}-21,27$, respectively), a broad one-proton mutiplet at $\delta 3.96(\mathrm{H}-3)$, and a broad singlet at $\delta 3.42$ (H-6). The signal for $\mathrm{H}-27$ was doubled owing to stereoi somerism at C-25, see below. The $3 \beta, 5 \alpha, 6 \beta$ hydroxylation pattern was supported by measuring the NMR spectrum in pyridine d_{5} and noting that a significant downfield shift occurred for $\mathrm{H}-3(\delta 4.84)$ and $\mathrm{H}-19$ ($\delta 1.63$)..7,8 Also, the $\mathrm{H}-3$ signal was coupled to a pair of sharp double doublets at $\delta 2.30(1 \mathrm{H}, \mathrm{J}=5.1,12.6$ Hz) and $2.94(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.6 \mathrm{~Hz})$, which were also mutually coupled (COSY) as expected for $\mathrm{H}-4 \alpha$ and H-4 β, respectively, in a 5α-hydroxylated sterol. The remaining downfield signals occurred at δ 3.81, 3.82 (overlapping pair of double doublets, $1 \mathrm{H}, \mathrm{J}=\sim 6, \sim 11$ Hz for each pair) and 3.90, 3.91 (overlapping pair of double doublets, $1 \mathrm{H}, \mathrm{J}=\sim 6^{\prime}, \sim 11 \mathrm{~Hz}$). The COSY spectrum revealed that the double doublet sets were coupled with each other and also to a signal at $\delta 1.82$, which in turn correlated to the doubled secondary methyl signal at $\delta 0.89$. Thus, the $3.81-3.91$ signals could be assigned to a hydroxy methyl group at C-26. The doubling of the hydroxymethylene and $\mathrm{H}-27$ signals indicates that $\mathbf{3}$ consists of a stereoisomeric mixture (25R/25S). The possibility that the signal doubling for $\mathrm{H}-26$ and $\mathrm{H}-27$ was due to conformational isomerism was contraindicated by the observation that the multiplicity of these signals did not change when the spectrum was measured at elevated temperatures $\left(50^{\circ} \mathrm{C}\right.$, MeOD). The downfield shift of the $\mathrm{C}-26$ protons relative to other reported examples ${ }^{5}$ reveals that the oxygen at this position is acetylated.

The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data for $\mathbf{3}$ (see Table 1) are consistent with this assignment and compare favorably with data for related sterols. ${ }^{5}$ The presence of a C-25 epimeric mixture was evident from the doubling of various peaks, including those assigned to C-26 ($\delta 70.46,70.61$), C-27 ($\delta 19.18,19.23$), and C-25 ($\delta 37.21,37.35$). Conventional cholesterol configurations are assumed for the steroid nucleus and side chain, except for C-25, inasmuch as the carbon chemical shifts match those of known sterols. ${ }^{5}$

The LRFABMS of 4 exhibited a peak at $\mathrm{m} / \mathrm{z} 459$ consistent with the formula $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Na}$, and HREIMS showed a peak at $\mathrm{m} / \mathrm{z} 418.0275$ corresponding to $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{3}$ (calcd 418.0215), hence, the latter was assumed to represent $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$. The IR spectrum contained absorptions for hydroxyl groups but not for any carbonyl functionality. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum was very similar to that of 3, except that the acetate methyl signal was missing and the signals for $\mathrm{H}-26,26$ were

Table 1. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Data of Steroids $\mathbf{3}$ and $\mathbf{4}(\delta)^{\mathrm{a}}$

carbon position	$3(\delta)^{\mathrm{b}}$	4(δ)
1	31.68	31.67
2	33.48	33.47
3	68.33	68.32
4	41.51	41.49
5	76.82	76.81
6	76.55	76.51
7	35.3	35.27
8	31.63	31.61
9	46.59	46.56
10	39.32	39.3
11	22.34	22.29
12	41.47	41.43
13	43.94	43.91
14	57.47	56.46
15	25.21	25.21
16	29.31	29.33
17	57.67	57.67
18	12.6	12.59
19	17.09	16.99
20	33.75, 33.83	34.74, 34.89
21	17.29	17.21, 17.3
22	37.21, 37.35	37.06, 37.15
23	24.40, 24.32	24.52, 24.58
24	34.82, 34.92	36.87, 36.93
25	36.99, 37.09	37.36, 37.48
26	70.45, 70.61	68.39, 68.57
27	19.17, 19.27	19.12, 19.23
28	173	
29	20.76	

${ }^{\text {a }}$ Recorded at 75 MHz in $\mathrm{CD}_{3} \mathrm{OD}$. ${ }^{\text {b }}$ Assignments aided by DEPT technique and analogy to literature values. ${ }^{5}$
shifted upfield slightly to $\delta 3.1-3.3$. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 4 was also nearly identical to that of $\mathbf{3}$ except that signals for the acetate group were missing and the doubled signal for $\mathrm{C}-26$ was observed at slightly higher field, $\delta 68.57,68.40$. Thus 4 was taken to be the alcohol analogue of $\mathbf{3}$. Acetylation of $\mathbf{3}$ and $\mathbf{4}$ yielded what was judged to be a common triacetyl derivative, 5, by TLC, MS, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.

Amides $\mathbf{1}$ and $\mathbf{2}$ and sterols $\mathbf{3}$ and $\mathbf{4}$ were all cytotoxic to murine leukemia cells (P-388), ED50 ($\mu \mathrm{g} / \mathrm{ml}$) 2.1 (1), 2.2 (2), 2.4 (3), 1.3 (4).

Experimental Section

General Experimental Procedures. Reagentgrade solvents were distilled before use for extraction and isolation procedures. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on Varian-VXR-300 and VXR-500 spectrometers in $\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CD}_{3} \mathrm{OD}$ or $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$. Chemical shift values were referenced to the residual protiated solvent peaks at, respectively, $\delta 7.24,7.15,3.30$, and 8.71 . LRMS were recorded on a Hewlett Packard 5985 mass spectrometer. HRMS measurements were obtained on a VG ZAB-E mass spectrometer. IR spectra were measured with a Bio Rad FTS-7 Ft-ir spectrometer. HPLC was performed using Waters 501 pumps, model 660 solvent programmer, and dual cell refractometer.

Extraction and Isolation of 1-4. Specimens of T. riisei were collected at a depth of ca. 15 m from N ortheast Pass, Chuuk, Federated States of Micronesia, J uly 1991, and stored $-20^{\circ} \mathrm{C}$ until used. A voucher specimen, 46-T-91, is kept at the University of Oklahoma Chemistry Department. Thawed specimens (653 g , wet weight) were extracted first with $\mathrm{MeOH}(500 \mathrm{~mL}$ $\times 2$) and then $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)(500 \mathrm{~mL} \times 2)$. The combined extracts were concentrated under vacuum at
$35^{\circ} \mathrm{C}$ to obtain 5.3 g of crude extract. The crude extract was dissolved in 200 mL of $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (9:1) and partitioned twice against equal volumes of hexane. The alcohol solution was diluted with $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (7:3) and extracted twice with equal volumes of $\mathrm{CH}_{2^{-}}$ Cl_{2}. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-soluble fraction (2.8 g) was chromatographed over Sephadex LH-20 ($75 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ column) using $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1), and 17 (ca. 100 mL) fractions were collected. These fractions were combined based on their behavior on Si gel TLC $\left[\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CHCl}_{2}\right.$ (1:19)] into two major fractions containing 1.3 g (early eluates) and 3.82 g (later eluates). The later eluates exhibited cytotoxic activity (ED50 $=11 \mu \mathrm{~g} / \mathrm{mL}$) against P-388 murine leukemia cells and were chromatographed on Si gel (120-240 mesh, $40-\mathrm{cm} \times 2.5 \mathrm{~cm}$ column) and eluted under gravity using a step gradient: hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1, 1:1, 0:1) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (19:1, 9:1, 4:1). Eighteen $300-\mathrm{mL}$ fractions, were collected and these were combined into 10 fractions. Fractions 5, 7, 8, and 9 displayed cytotoxic activity ($E D_{50}=7-11 \mu \mathrm{~g} / \mathrm{mL}$). Fraction 5 (12 mg, ED50 $=7 \mu \mathrm{~g} / \mathrm{mL}$) was resol ved on a reversed-phase C-18 (Whatman Partisil-5 ODS-3, 250 $\times 9.5 \mathrm{~mm}$) column using gradient elution in $\mathrm{CH}_{3} \mathrm{OH}$: $\mathrm{H}_{2} \mathrm{O}$ (1:1 to 1:0 in 40 min) and detected by UV absorbance at 254 nm to give two major components. These were further purified on a C-18 analytical column (Rainin Microsorb $250 \times 4.6 \mathrm{~mm}$) using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (23:77) with RI detection to obtain pure 1 (11 mg) and 2 (14 mg). Fraction 8 was purified by HPLC over C-18 (as above) in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (4:1), followed by another chromatography on C -18 using n-propanol $-\mathrm{CH}_{3} \mathrm{CN}-$ $\mathrm{H}_{2} \mathrm{O}$ (5:6:5) to give compound $\mathbf{3}$ (8.0 mg). Fraction 9 was resol ved by HPLC over C-18 (as above) in $\mathrm{MeOH}-\mathrm{CH}_{3}-$ $\mathrm{CN}-\mathrm{H}_{2} \mathrm{O}-$ THF (5:5:6:1) to yield compound 4 (10.0 mg).

N-[2-Phenylethyl]-9-oxo-hexadecacarboxamide (1): white crystalline solid; mp $85{ }^{\circ} \mathrm{C}$; IR v max (neat) 3316 (-NH), 1707 ($\mathrm{C}=\mathrm{O}$), 1638 ($\mathrm{O}=\mathrm{C}-\mathrm{NH}$) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.87(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-16)$, 1.22 (14 H , br s, H-4-6 and H-12-15), 1.55 ($6 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3,7,11), 2.08(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-2), 2.35(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, \mathrm{H}-10), 2.36(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-8), 2.79(2$ $\left.\mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{Z}^{\prime}\right), 3.49\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{I}^{\prime}\right)$, 4.41 (1 H, br s, $-\mathrm{N}-\mathrm{H}$), 7.23 ($5 \mathrm{H}, \mathrm{m}$, phenyl); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right) \delta 0.87(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-16), 1.23$ (2H, heptet, H-15), 1.28 (14 H, br s, H-4-6 and H-1215), 1.54 (2 H , pentet, $\mathrm{H}-11$), 1.61 (2 H , pentet, $\mathrm{H}-7$), 1.65 (2 H, m, H-3), $1.81(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-2), 2.05$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-10$), $2.07(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-8)$, $2.53\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.38(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}$, H-1'), $4.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N}-\mathrm{H}), 7.16(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.87$ (C-16), 22.3 (C-15), 23.86, 25.70, 26.0, 29.22, 29.26, 29.35, 35.73, 36.84, 40.4 (C$\left.1^{\prime}\right), 42.53,42.80$ (C-8 and C-10), 126.49 (C-6'), 128.62, ($\mathrm{C}-4^{\prime}$ and $\mathrm{C}-8^{\prime}$), 128.76 ($\mathrm{C}-5^{\prime}$ and $\mathrm{C}-7^{\prime}$), 138.93 ($\mathrm{C}-3^{\prime}$), 173.08 (C-1), 206.39 (C-9); HREIMS m/ z found 373.2968 (cal cd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NO}_{2}, 373.2981$); EIMS (70 ev) m/z (rel int) 373 (1.1) M^{+}, 282 (16.9) [M $\left.-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right]^{+}, 288$ (2.5) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}_{2} \mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{C}=\mathrm{O}^{+}, 274\right.$ (21) [M $\left.\mathrm{C}_{7} \mathrm{H}_{15}\right]^{+}, 253$ (69) [M $\left.-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right]^{+}, 176$ (9) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{2}\right]^{+}, 163$ (13) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$ $\left.\mathrm{NHC}(\mathrm{OH}) \mathrm{CH}_{2}\right]^{+}, 104$ (100) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCH}_{2}\right]^{+}, 91$ (13.5) [$\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right]^{+}, 85$ (29), 69 (16).

N-(2-Phenylethyl)-9-hydroxyhexadecacarboxamide (2): white crystalline solid, $\mathrm{mp} 78^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-2.68$ (c $0.41, \mathrm{CHCl}_{3}$); IR $v \max$ (neat) $3310(\mathrm{~N}-\mathrm{H}), 1641$
(CONH); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right) \delta 0.97(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ 7.5 Hz, H-16), 1.35 ($22 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-4$ to $\mathrm{H}-8$ and $\mathrm{H}-10$ to H-15), 1.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 1.78 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-2$), $2.58\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.33(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}$, H-1'), 3.48 (1 H, br m, H-9), 4.51 (br s, NH), 7.16 (5 H , m, phenyl); EIMS (70 ev) m/ z (rel. int.) 375 (2.2) [M] ${ }^{+}$ 373 (2.7) [M - 2 H$]^{+}, 357$ (4.7) [M - $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}, 266$ (24.7) $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right]^{+}, 253$ (21.7) $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2-}\right.$ $\left.\mathrm{CH}_{2} \mathrm{NH}\right]^{+}, 176$ (9.4) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCOCH}_{2}\right]^{+}, 163$ (13.9) $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCOHCH}_{2}\right]^{+}$, 104 (100) $\left[\mathrm{C}_{6} \mathrm{H}_{5}-\right.$ $\left.\mathrm{CHCH}_{2}\right]^{+}$.

Cholestane-3 $\beta, 5 \alpha, 6 \beta, 26$-tetrol 26-acetate (3): white crystalline solid; mp 200-202 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D} 3.52^{\circ}$ (c 0.34, $\mathrm{MeOH}) ;$ IR v max (neat), 3117 (-OH), 1729, 1713 (acetate-carbonyl) $\mathrm{cm}^{-1}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta$ $0.67(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 0.890$ and 0.896 (3 H , pair of d, J = 7.0 and 6.5 Hz respectively, $\mathrm{H}-27$ isomers), 0.90 (3 H , $\mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{H}-21), 1.11(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19), 1.82(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-25), 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}\right), 3.42(1 \mathrm{H}$, brd $\mathrm{s}, \mathrm{H}-6 \alpha)$ 3.81 and 3.82 (1 H , pair of dd, J = ca. 6, ca. $11 \mathrm{~Hz}, \mathrm{H}-26$), 3.90 and 3.91 (1 H , pair of dd, J $=$ ca. 6 , ca. 11 Hz , H-26'), 3.96 (1 H , heptet, $\mathrm{H}-3 \alpha$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 300\right.$ $\mathrm{MHz}) \delta 0.71$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18$), 0.90 and 0.91 ($3 \mathrm{H}, \mathrm{d}$ ea, J $=6.9,6.6 \mathrm{~Hz}$, respectively, H-27 isomers), 0.94 ($3 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}-21), 1.63(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19), 1.78(1 \mathrm{H}$ brd m, H-25), 2.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{O}$), $2.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.1$, $12.6 \mathrm{~Hz}, \mathrm{H}-4 \alpha), 2.94(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.6, \mathrm{~Hz}, \mathrm{H}-4 \beta), 3.92$ (1 H, dd, J = ca. 6, ca. $11 \mathrm{~Hz}, \mathrm{H}-26$), 4.06 (1 H, mult., H-26'), 4.14 (1 H , brd s, $\mathrm{H}-6 \alpha$), 4.84 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha$); ${ }^{13} \mathrm{C}-$ NMR (CD ${ }_{3} \mathrm{OD}, 75 \mathrm{MHz}$) see Table 1; HRFABMS found $\mathrm{m} / \mathrm{z} 501.3553$ (calcd for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{Na} 501.3556$; EIMS (70 ev) m/ z (rel int) 478 (2.3) M^{+}, 460 (15) [M - H2O] ${ }^{+}$, 442 (100) $\left[\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 424(34.6)\left[\mathrm{M}-3 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 416$ (2.1) $\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{COOH}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 398$ (4.4) $\left[\mathrm{M}-\mathrm{CH}_{3}{ }^{-}\right.$ $\mathrm{COOH}-2 \mathrm{H}_{2} \mathrm{O}^{+}$.

Cholestane-3 $\beta, 5 \alpha, 6 \beta$,-26-tetrol (4): white crystalline solid, mp $212-214{ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-70^{\circ}$ (c $0.02, \mathrm{MeOH}$); IR v max (neat) $3125(-\mathrm{OH}), \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 300 MHz), $\delta 0.61$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18$), 0.81-0.84 (3 H, d ea, $\mathrm{H}-21$ and $\mathrm{H}-27$ isomers), $1.10(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19), 1.93$ (1 H , $\mathrm{t}, \mathrm{J}=12.4 \mathrm{~Hz}, \mathrm{H}-4 \beta$; coupled with $\delta 3.92$), 3.1-3.3 (2 H, 2 pair of dd overlapped with each other and solvent peak H-26,26'), 3.41 (1 H , br s, H-6 $)$), 3.92 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3 \alpha)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right)$, see Table 1; HREIMS found $\mathrm{m} / \mathrm{z} 418.0275$ [$\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}$ ion], (calcd for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{3} 418.0215$); LREIMS m/z (rel int), 418 (13.8) [M $\left.-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 400(62.1)\left[\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 382$ (23.2) [M $\left.3 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 364\left[\mathrm{M}-4 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 278$ (47.5), 251.

Oxidation of 2 into 1. A 5% solution of dipyridinechromium (VI)oxide ${ }^{9}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to 6 mg of $\mathbf{2}$ dissolved in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6:1 final molar ratio) and stirred for 2 h at room temperature. The reaction mixture was partitioned against an equal amount of $\mathrm{H}_{2} \mathrm{O}$, and the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and chromatographed on Si gel using $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:23) to isolate 4.2 mg of $\mathbf{1}$ (70% yield).

Acetylation of 3 and 4. Acetic anhydride:pyridine ($1: 1, \mathrm{v} / \mathrm{v}$) 3 mL was added to 3 mg quantities of $\mathbf{3}$ and 4. Each solution was stirred at room temperature for 12 h. The reaction mixtures were evaporated and chromatographed on Si gel using Me2CO-hexane (1:9) to obtain the acetylated derivative 5: 1.8 mg from 3; 2.1 mg from 4.

Cholestane-3 $, 5 \alpha, 6 \beta, 26$-tetrol 3,6,26-triacetate (5): amorphous powder; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.67$
(3 H, s, H-18), 0.87-0.94 (3 H, d ea., overlapped doublets of $\mathrm{H}-21$ and $\mathrm{H}-27$), 2.0, $2.02,2.04$ (3 H ea., $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$), 3.82 and 3.84 (1 H pr of dd, $\mathrm{H}-26$), 3.91 and $3.92(1 \mathrm{H}$, pr of dd, H-26'), 4.65 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-6 \alpha$), 5.11 (1 H , heptet, H-3 α); HRFABMS found m / z 584.9920, calcd for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{Na}^{+}$, 584.9973; LRFABMS m/z $585.4[\mathrm{M}+$ $\mathrm{Na}]^{+}, 545.4\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$.

Acknowledgments. This work was supported by Department of Commerce, NOAA Sea Grant Project NA36RG0058. We thank Mr. Charles Arneson for collection and identification of T. riisei. We thank the Department of Marine Resources, Chuuk, Federated States of Micronesia, for permission to collect specimens.

References and Notes

(1) Faulkner, D. J. Nat. Prod. Rept., 1995, 12, 223-269.
(2) Ross, R. A.; Scheuer, P. J. Tetrahedron Lett. 1979, 49, 47014704.
(3) Baker, B. J.; Okuda, R. K.; Yu, P. T. K.; Scheuer, P. J. J. Am. Chem. Soc. 1985, 107, 2976-2977.
(4) Baker, B. J.; Scheuer, P. J.J. Nat. Prod. 1994, 57, 1346-1353.
(5) Finamore, E.; Minale, L.; Riccio, R.; Rinaldo, G.; Zollo, F. J . Org. Chem. 1991, 56, 1146-1153.
(6) D’Auria, M. V.; Minale, L.; Riccio, R. Chem. Rev. 1993, 93, 18391895.
(7) Demarco, P. V.; Farkas, E.; Doddrell, D.; Mylari, B. L.; Wenkert, E. J. Am. Chem. Soc. 1968, 90, 5480-5486.
(8) Schmitz, F. J .; Campbell, D. C.; K ubo, I. Steroids 1976, 28, 211221.
(9) Collins, J. C.; Hess, W. W.; Frank, J. Tetrahedron Lett. 1968, 3363-3366.

NP960032T

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, J anuary 1, 1996.

